
Theoretical Computational Speed-Up in SPARK, 11/17/2003

Theoretical Computational Speed-Up in SPARK

by Dimitri Curtil (SRG/LBNL)

Typical measures of computational efficiency are:

1. the number of function evaluations,

2. the number of iterations required to solve the nonlinear system of equations, and

3. the computational cost per iteration.

It is important to keep in mind that the overall cost of solving the system of equations
depends on the number of iterations required to achieve some prescribed precision in all
the unknown variables. Since the solution sequence derived by SPARK in a strongly-
connected component is different than the one used by conventional solvers, the number
of iterations until convergence might differ and therefore impact the overall
computational cost. However, this discrepancy cannot be quantified theoretically as it
depends inherently on the equation set being solved. Therefore, we cannot use the
number of iterations as a fair comparative measure.

To assess the theoretical computational speed-up obtained with the SPARK graph-
theoretical analysis we will derive the metrics 1 and 3 for a system of equations and
compare them with the same metrics typical of conventional solvers for a system of the
same size.

n

Solving a System of Nonlinear Equations
Solving a system of nonlinear equations with equations and unknowns consists in
finding the root

n n
*x assuming that the function with all the equations is continuously

differentiable:
F

 (1.1)
* *

:
() 0

n n

n

Given F
Find x such that F x

 →

∈ =
This problem is typically solved using the Newton method. At each iteration , the
Newton method consists in solving the following linear system:

k

() ()

1

k
k

k

k k k

F x
kx F x

x
x x x+

∂
⋅∆ = − ∂

 = + ∆

 (1.2)

1/5

Theoretical Computational Speed-Up in SPARK, 11/17/2003

Structure of a Strongly-connected Component in SPARK
A strongly-connected component in SPARK is a subsystem of nonlinear equations and

 unknowns. Following the cut set reduction algorithm the n unknowns are split
between n non-break unknowns and break unknowns v , whereby .

n
n

u u vn u vn n n= +

 (1.3)

() ()

(,)
(,) (,)

(,)

u v u vn n n n

G u v
u v F u v

H u v

+ + →

=

The subsystem of equations () (),G u v u g u v= − ,

)

 is ordered in such a way that it can be
solved using forward substitution when the break variables v are known. Here, the
functions represent the actual inverses matched with the non-break variables . (,g u v u

 () 2,1

,1 , 1

0 0 0
0,

0
0

u u un n n

gg u v
u

g g −

 ∂ =
∂

…

…

)

 (1.4)

Because of graph-theoretical derivation of the small cut set, only the equations
forming the vector need to be solved simultaneously for the break variables
using an iterative solution method, e.g., the Newton method.

vn

vn(,H u v

At each iteration k , the Newton method consists in solving the following linear system
for the reduced system of equations : H

() ()

1

,
,k k

k k
k

k k k

H u v
v H u v

v
v v v+

∂
⋅∆ = − ∂

 = + ∆

k (1.5)

Computational Cost per Iteration
The computational cost of a Newton iteration, excluding function and derivative
evaluation, is invariably determined by the linear algebra, [1]. The arithmetic cost of the
factorization of a dense matrix of size n n× is typically a small multiple of .3n 1

Thus, the computational cost of a Newton iteration in a strongly-connected component is
proportional to . 3

vn

1 The arithmetic cost of the matrix factorization is proportional to for secant methods. 2n

2/5

Theoretical Computational Speed-Up in SPARK, 11/17/2003

Number of Function Evaluations
The number of function evaluations needed to compute the residual function used in the
Newton iterations (1.2) and (1.5) is identical for the conventional solver and the SPARK
solver. At each iteration it is: u vn n n= +

The number of function evaluations needed to compute the finite differences to form the
Jacobian matrix is for the function in (1.2) whereas it is for the
function in (1.5). Depending on the strategy implemented in the actual nonlinear
solver the Jacobian matrix might not be re-computed at each iteration.

2n n n⋅ = F vn n⋅
H

Summary

Speed-up in each strongly-connected component
To estimate the computational speed-up achieved with the SPARK approach, we need to
introduce the notion of the reduction ratio as the ratio of the number of break variables
over the number of unknown variables:

 vnr
n

= (1.6)

The reduction ratio is smaller or equal to 1. It is equal to 1 when the identified cut set is
exactly the set of all unknowns.

The theoretical speed-up is estimated as the ratio of the SPARK metric over the
corresponding metric for a conventional solver.

 Conventional solver SPARK solver Speed-up
Computational cost per
iteration ()3nΟ ()3

vnΟ ()3rΟ

Number of function
evaluations to compute
residuals

n n 1

Number of function
evaluations to compute
finite-differences

2n vn n⋅ r

At each iteration, the theoretical speed-up achieved by the SPARK solution technique is
as high as Ο in each strongly-connected component. This comparison is only true
when using linear solution methods for dense matrices.

()3r

Impact of using sparse solution techniques
When using sparse solution techniques, the speed-up factor will be less drastic as the
computational cost per iteration becomes proportional to the number of non-zero entries
raised to some exponent usually smaller than 3, typically ()2nΟ .

3/5

Theoretical Computational Speed-Up in SPARK, 11/17/2003

To be fair, it is not straight-forward to derive a theoretical speed-up factor since the
Jacobian matrix for the function might intrinsically be less sparse than the one for the
original function . However, when solving “large”

H
F 2 strongly-connected components,

experience has shown that SPARK benefits drastically from using a sparse solution
technique.3 The more equations there are in the component the less likely they are to all
depend on all the unknown variables, therefore still producing a very sparse Jacobian
matrix.4 Although the sparsity pattern in the Jacobian matrix for the SPARK approach is
likely to be different than the one observed in the Jacobian matrix for the conventional
solver, it is still significant enough when n is big enough. v

Impact of the strong component decomposition
The graph-theoretic analysis in SPARK also performs a strong component
decomposition, whereby the original problem is further decomposed into smaller sub-
problems that are solved in sequential order. This can represent drastic further
computational speed-up over the conventional approach that solves the entire set of
equations at once.

If SPARK identifies strongly-connected components and N M “explicit” components,5
the speed-up in the computational cost per iteration to solve the linear system is: ccpiK

()

()

3

1
3

N

i
i

ccpi

c
K

n
=

Ο
=

Ο

∑
 (1.7)

where

ic size of cut set (break variables) in strongly connected component i

n total number of unknown variables in problem (
1

N

i
i
c n

=

≤∑)

This speed-up is only fully achieved if we further assume that the same number of
iterations is required to solve each nonlinear problem in the strongly-connected
components as it is in the full problem.

A loose estimate ccpiK

maxc
 of the speed-up in Equation (1.7) can be derived using the size of

the largest cut set :

()
()

3
max

3ccpi

N c
K

n

⋅Ο
≤

Ο
 (1.8)

2 With at least 100 break variables.
3 The sparse solution technique implemented in the SPARK linear solver is based on the UMFPACK
library (http://www.cise.ufl.edu/research/sparse/umfpack/).
4 The Jacobian matrix for a function with is typically over 90% sparse! H 100vn >
5 An explicit component does not contain any break variables, therefore it can be solved by forward
substitution. This means that the computational cost is exactly n function evaluations. u

4/5

Theoretical Computational Speed-Up in SPARK, 11/17/2003

5/5

Finally, the SPARK graph-theoretic approach also delivers a decrease in the number of
function evaluations required to compute the finite-differences. This speed-up ,
although of lower order than the one achieved in the computational cost per iteration, can
also be significant if the functions comprising the nonlinear problem are expensive to
evaluate.

fefdK

2

1
2

N

i i
i

fefd

r n
K

n
=

⋅
=
∑

 (1.9)

where

ir cut set reduction ratio achieved in the strongly connected component i

in number of unknown variables in the strongly connected component i

n total number of unknown variables in problem (
1

N

i
i
n n

=

≤∑)

References
[1] Dennis J. E. and Schnabel R. B. (1996), “Numerical Methods for Unconstrained
optimization and Nonlinear Equations”, SIAM Classics in Applied Mathematics 16,
Englewood Cliffs, N.J.

	Theoretical Computational Speed-Up in SPARK
	Solving a System of Nonlinear Equations
	Structure of a Strongly-connected Component in SPARK
	Computational Cost per Iteration
	Number of Function Evaluations
	Summary
	Speed-up in each strongly-connected component
	Impact of using sparse solution techniques
	Impact of the strong component decomposition

	References

